Cargando…
Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program
The need to monitor specific areas for different applications requires high spatial and temporal resolution. This need has led to the proliferation of ad hoc systems on board nanosatellites, drones, etc. These systems require low cost, low power consumption, and low weight. The work we present follo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512583/ https://www.ncbi.nlm.nih.gov/pubmed/34640826 http://dx.doi.org/10.3390/s21196506 |
_version_ | 1784583028472807424 |
---|---|
author | Santalices, David Briz, Susana de Castro, Antonio J. López, Fernando |
author_facet | Santalices, David Briz, Susana de Castro, Antonio J. López, Fernando |
author_sort | Santalices, David |
collection | PubMed |
description | The need to monitor specific areas for different applications requires high spatial and temporal resolution. This need has led to the proliferation of ad hoc systems on board nanosatellites, drones, etc. These systems require low cost, low power consumption, and low weight. The work we present follows this trend. Specifically, this article evaluates a method to determine the cloud map from the images provided by a simple bi-spectral infrared camera within the framework of JEM-EUSO (The Joint Experiment Missions-Extrem Universe Space Observatory). This program involves different experiments whose aim is determining properties of Ultra-High Energy Cosmic Ray (UHECR) via the detection of atmospheric fluorescence light. Since some of those projects use UV instruments on board space platforms, they require knowledge of the cloudiness state in the FoV of the instrument. For that reason, some systems will include an infrared (IR) camera. This study presents a test to generate a binary cloudiness mask (CM) over the ocean, employing bi-spectral IR data. The database is created from Moderate-Resolution Imaging Spectroradiometer (MODIS) data (bands 31 and 32). The CM is based on a split-window algorithm. It uses an estimation of the brightness temperature calculated from a statistical study of an IR images database along with an ancillary sea surface temperature. This statistical procedure to obtain the estimate of the brightness temperature is one of the novel contributions of this work. The difference between the measured and estimation of the brightness temperature determines whether a pixel is cover or clear. That classification requires defining several thresholds which depend on the scenarios. The procedure for determining those thresholds is also novel. Then, the results of the algorithm are compared with the MODIS CM. The agreement is above 90%. The performance of the proposed CM is similar to that of other studies. The validation also shows that cloud edges concentrate the vast majority of discrepancies with the MODIS CM. The relatively high accuracy of the algorithm is a relevant result for the JEM-EUSO program. Further work will combine the proposed algorithm with complementary studies in the framework of JEM-EUSO to reinforce the CM above the cloud edges. |
format | Online Article Text |
id | pubmed-8512583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85125832021-10-14 Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program Santalices, David Briz, Susana de Castro, Antonio J. López, Fernando Sensors (Basel) Article The need to monitor specific areas for different applications requires high spatial and temporal resolution. This need has led to the proliferation of ad hoc systems on board nanosatellites, drones, etc. These systems require low cost, low power consumption, and low weight. The work we present follows this trend. Specifically, this article evaluates a method to determine the cloud map from the images provided by a simple bi-spectral infrared camera within the framework of JEM-EUSO (The Joint Experiment Missions-Extrem Universe Space Observatory). This program involves different experiments whose aim is determining properties of Ultra-High Energy Cosmic Ray (UHECR) via the detection of atmospheric fluorescence light. Since some of those projects use UV instruments on board space platforms, they require knowledge of the cloudiness state in the FoV of the instrument. For that reason, some systems will include an infrared (IR) camera. This study presents a test to generate a binary cloudiness mask (CM) over the ocean, employing bi-spectral IR data. The database is created from Moderate-Resolution Imaging Spectroradiometer (MODIS) data (bands 31 and 32). The CM is based on a split-window algorithm. It uses an estimation of the brightness temperature calculated from a statistical study of an IR images database along with an ancillary sea surface temperature. This statistical procedure to obtain the estimate of the brightness temperature is one of the novel contributions of this work. The difference between the measured and estimation of the brightness temperature determines whether a pixel is cover or clear. That classification requires defining several thresholds which depend on the scenarios. The procedure for determining those thresholds is also novel. Then, the results of the algorithm are compared with the MODIS CM. The agreement is above 90%. The performance of the proposed CM is similar to that of other studies. The validation also shows that cloud edges concentrate the vast majority of discrepancies with the MODIS CM. The relatively high accuracy of the algorithm is a relevant result for the JEM-EUSO program. Further work will combine the proposed algorithm with complementary studies in the framework of JEM-EUSO to reinforce the CM above the cloud edges. MDPI 2021-09-29 /pmc/articles/PMC8512583/ /pubmed/34640826 http://dx.doi.org/10.3390/s21196506 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Santalices, David Briz, Susana de Castro, Antonio J. López, Fernando Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program |
title | Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program |
title_full | Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program |
title_fullStr | Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program |
title_full_unstemmed | Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program |
title_short | Bi-Spectral Infrared Algorithm for Cloud Coverage over Oceans by the JEM-EUSO Mission Program |
title_sort | bi-spectral infrared algorithm for cloud coverage over oceans by the jem-euso mission program |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512583/ https://www.ncbi.nlm.nih.gov/pubmed/34640826 http://dx.doi.org/10.3390/s21196506 |
work_keys_str_mv | AT santalicesdavid bispectralinfraredalgorithmforcloudcoverageoveroceansbythejemeusomissionprogram AT brizsusana bispectralinfraredalgorithmforcloudcoverageoveroceansbythejemeusomissionprogram AT decastroantonioj bispectralinfraredalgorithmforcloudcoverageoveroceansbythejemeusomissionprogram AT lopezfernando bispectralinfraredalgorithmforcloudcoverageoveroceansbythejemeusomissionprogram |