Cargando…
Anomaly Detection of Water Level Using Deep Autoencoder
Anomaly detection is one of the crucial tasks in daily infrastructure operations as it can prevent massive damage to devices or resources, which may then lead to catastrophic outcomes. To address this challenge, we propose an automated solution to detect anomaly pattern(s) of the water levels and re...
Autores principales: | Nicholaus, Isack Thomas, Park, Jun Ryeol, Jung, Kyuil, Lee, Jun Seoung, Kang, Dae-Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512605/ https://www.ncbi.nlm.nih.gov/pubmed/34640997 http://dx.doi.org/10.3390/s21196679 |
Ejemplares similares
-
One-Class Convolutional Neural Networks for Water-Level Anomaly Detection
por: Nicholaus, Isack Thomas, et al.
Publicado: (2022) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
por: Tang, Ta-Wei, et al.
Publicado: (2022) -
Anomaly detection in radiotherapy plans using deep autoencoder networks
por: Huang, Peng, et al.
Publicado: (2023) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020)