Cargando…
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
Traffic speed prediction plays an important role in intelligent transportation systems, and many approaches have been proposed over recent decades. In recent years, methods using graph convolutional networks (GCNs) have been more promising, which can extract the spatiality of traffic networks and ac...
Autores principales: | Liu, Duanyang, Xu, Xinbo, Xu, Wei, Zhu, Bingqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512614/ https://www.ncbi.nlm.nih.gov/pubmed/34640721 http://dx.doi.org/10.3390/s21196402 |
Ejemplares similares
-
Traffic Speed Prediction: An Attention-Based Method
por: Liu, Duanyang, et al.
Publicado: (2019) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
por: Zhao, Yun, et al.
Publicado: (2022) -
SGGformer: Shifted Graph Convolutional Graph-Transformer for Traffic Prediction
por: Pu, Shilin, et al.
Publicado: (2022) -
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022)