Cargando…
A Transformer-Based Neural Machine Translation Model for Arabic Dialects That Utilizes Subword Units
Languages that allow free word order, such as Arabic dialects, are of significant difficulty for neural machine translation (NMT) because of many scarce words and the inefficiency of NMT systems to translate these words. Unknown Word (UNK) tokens represent the out-of-vocabulary words for the reason...
Autores principales: | Baniata, Laith H., Ampomah, Isaac. K. E., Park, Seyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512729/ https://www.ncbi.nlm.nih.gov/pubmed/34640835 http://dx.doi.org/10.3390/s21196509 |
Ejemplares similares
-
A Neural Machine Translation Model for Arabic Dialects That Utilises Multitask Learning (MTL)
por: Baniata, Laith H., et al.
Publicado: (2018) -
Asymptotic Analysis of the kth Subword Complexity
por: Ahmadi, Lida, et al.
Publicado: (2020) -
An ensemble of neural models for nested adverse drug events and medication extraction with subwords
por: Ju, Meizhi, et al.
Publicado: (2019) -
Enhancing Subword Embeddings with Open N-grams
por: Veres, Csaba, et al.
Publicado: (2020) -
Decision Trees for Binary Subword-Closed Languages
por: Moshkov, Mikhail
Publicado: (2023)