Cargando…
Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light
Understanding the structural organization of chromatin is essential to comprehend the gene functions. The chromatin organization changes in the cell cycle, and it conforms to various compaction levels. We investigated a chromatin solenoid model with nucleosomes shaped as cylindrical units arranged i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512730/ https://www.ncbi.nlm.nih.gov/pubmed/34641237 http://dx.doi.org/10.3390/polym13193422 |
_version_ | 1784583065262096384 |
---|---|
author | Ashraf, Muhammad Waseem Le Gratiet, Aymeric Diaspro, Alberto |
author_facet | Ashraf, Muhammad Waseem Le Gratiet, Aymeric Diaspro, Alberto |
author_sort | Ashraf, Muhammad Waseem |
collection | PubMed |
description | Understanding the structural organization of chromatin is essential to comprehend the gene functions. The chromatin organization changes in the cell cycle, and it conforms to various compaction levels. We investigated a chromatin solenoid model with nucleosomes shaped as cylindrical units arranged in a helical array. The solenoid with spherical-shaped nucleosomes was also modeled. The changes in chiral structural parameters of solenoid induced different compaction levels of chromatin fiber. We calculated the angle-resolved scattering of circularly polarized light to probe the changes in the organization of chromatin fiber in response to the changes in its chiral parameters. The electromagnetic scattering calculations were performed using discrete dipole approximation (DDA). In the chromatin structure, nucleosomes have internal interactions that affect chromatin compaction. The merit of performing computations with DDA is that it takes into account the internal interactions. We demonstrated sensitivity of the scattering signal’s angular behavior to the changes in these chiral parameters: pitch, radius, the handedness of solenoid, number of solenoid turns, the orientation of solenoid, the orientation of nucleosomes, number of nucleosomes, and shape of nucleosomes. These scattering calculations can potentially benefit applying a label-free polarized-light-based approach to characterize chromatin DNA and chiral polymers at the nanoscale level. |
format | Online Article Text |
id | pubmed-8512730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85127302021-10-14 Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light Ashraf, Muhammad Waseem Le Gratiet, Aymeric Diaspro, Alberto Polymers (Basel) Article Understanding the structural organization of chromatin is essential to comprehend the gene functions. The chromatin organization changes in the cell cycle, and it conforms to various compaction levels. We investigated a chromatin solenoid model with nucleosomes shaped as cylindrical units arranged in a helical array. The solenoid with spherical-shaped nucleosomes was also modeled. The changes in chiral structural parameters of solenoid induced different compaction levels of chromatin fiber. We calculated the angle-resolved scattering of circularly polarized light to probe the changes in the organization of chromatin fiber in response to the changes in its chiral parameters. The electromagnetic scattering calculations were performed using discrete dipole approximation (DDA). In the chromatin structure, nucleosomes have internal interactions that affect chromatin compaction. The merit of performing computations with DDA is that it takes into account the internal interactions. We demonstrated sensitivity of the scattering signal’s angular behavior to the changes in these chiral parameters: pitch, radius, the handedness of solenoid, number of solenoid turns, the orientation of solenoid, the orientation of nucleosomes, number of nucleosomes, and shape of nucleosomes. These scattering calculations can potentially benefit applying a label-free polarized-light-based approach to characterize chromatin DNA and chiral polymers at the nanoscale level. MDPI 2021-10-05 /pmc/articles/PMC8512730/ /pubmed/34641237 http://dx.doi.org/10.3390/polym13193422 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ashraf, Muhammad Waseem Le Gratiet, Aymeric Diaspro, Alberto Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light |
title | Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light |
title_full | Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light |
title_fullStr | Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light |
title_full_unstemmed | Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light |
title_short | Computational Modeling of Chromatin Fiber to Characterize Its Organization Using Angle-Resolved Scattering of Circularly Polarized Light |
title_sort | computational modeling of chromatin fiber to characterize its organization using angle-resolved scattering of circularly polarized light |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512730/ https://www.ncbi.nlm.nih.gov/pubmed/34641237 http://dx.doi.org/10.3390/polym13193422 |
work_keys_str_mv | AT ashrafmuhammadwaseem computationalmodelingofchromatinfibertocharacterizeitsorganizationusingangleresolvedscatteringofcircularlypolarizedlight AT legratietaymeric computationalmodelingofchromatinfibertocharacterizeitsorganizationusingangleresolvedscatteringofcircularlypolarizedlight AT diasproalberto computationalmodelingofchromatinfibertocharacterizeitsorganizationusingangleresolvedscatteringofcircularlypolarizedlight |