Cargando…
Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics—Part 1: Robustness
Being able to capture relevant information about elite athletes’ movement “in the wild” is challenging, especially because reference marker-based approaches hinder natural movement and are highly sensitive to environmental conditions. We propose Pose2Sim, a markerless kinematics workflow that uses O...
Autores principales: | Pagnon, David, Domalain, Mathieu, Reveret, Lionel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512754/ https://www.ncbi.nlm.nih.gov/pubmed/34640862 http://dx.doi.org/10.3390/s21196530 |
Ejemplares similares
-
Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics—Part 2: Accuracy
por: Pagnon, David, et al.
Publicado: (2022) -
Anipose: A toolkit for robust markerless 3D pose estimation
por: Karashchuk, Pierre, et al.
Publicado: (2021) -
Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing
por: Lahkar, Bhrigu K., et al.
Publicado: (2022) -
Validation of deep learning-based markerless 3D pose estimation
por: Kosourikhina, Veronika, et al.
Publicado: (2022) -
Monocular 3D Human Pose Markerless Systems for Gait Assessment
por: Zhu, Xuqi, et al.
Publicado: (2023)