Cargando…
Recognition of EEG Signals from Imagined Vowels Using Deep Learning Methods
The use of imagined speech with electroencephalographic (EEG) signals is a promising field of brain-computer interfaces (BCI) that seeks communication between areas of the cerebral cortex related to language and devices or machines. However, the complexity of this brain process makes the analysis an...
Autores principales: | Sarmiento, Luis Carlos, Villamizar, Sergio, López, Omar, Collazos, Ana Claros, Sarmiento, Jhon, Rodríguez, Jan Bacca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512781/ https://www.ncbi.nlm.nih.gov/pubmed/34640824 http://dx.doi.org/10.3390/s21196503 |
Ejemplares similares
-
Imagined Speech Classification Using EEG and Deep Learning
por: Abdulghani, Mokhles M., et al.
Publicado: (2023) -
Deep Reinforcement Learning for Articulatory Synthesis in a Vowel-to-Vowel Imitation Task
por: Shitov, Denis, et al.
Publicado: (2023) -
Linguistic representation of vowels in speech imagery EEG
por: Nitta, Tsuneo, et al.
Publicado: (2023) -
Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG
por: Cooney, Ciaran, et al.
Publicado: (2020) -
Reduced acoustic and electric integration in concurrent-vowel recognition
por: Yang, Hsin-I, et al.
Publicado: (2013)