Cargando…
Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges
The technique of active ionospheric sounding by ionosondes requires sophisticated methods for the recovery of experimental data on ionograms. In this work, we applied an advanced algorithm of deep learning for the identification and classification of signals from different ionospheric layers. We col...
Autores principales: | Mendoza, Merlin M., Chang, Yu-Chi, Dmitriev, Alexei V., Lin, Chia-Hsien, Tsai, Lung-Chih, Li, Yung-Hui, Hsieh, Mon-Chai, Hsu, Hao-Wei, Huang, Guan-Han, Lin, Yu-Ciang, Tsogtbaatar, Enkhtuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512826/ https://www.ncbi.nlm.nih.gov/pubmed/34640800 http://dx.doi.org/10.3390/s21196482 |
Ejemplares similares
-
State-of-the-Art Capability of Convolutional Neural Networks to Distinguish the Signal in the Ionosphere
por: Chang, Yu-Chi, et al.
Publicado: (2022) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023) -
Protein Contact Map Prediction Based on ResNet and DenseNet
por: Li, Zhong, et al.
Publicado: (2020) -
DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection
por: Girdhar, Nancy, et al.
Publicado: (2022)