Cargando…
Fretting Fatigue Performance of Unidirectional, Laminated Carbon Fibre Reinforced Polymer Straps at Elevated Service Temperature
The fretting fatigue performance of laminated, unidirectional (UD), pin-loaded, carbon fibre-reinforced polymer (CFRP) straps that can be used as bridge hanger cables was investigated at a sustained service temperature of 60 °C. The aim of this paper is to elucidate the influence of the slightly ele...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512859/ https://www.ncbi.nlm.nih.gov/pubmed/34641252 http://dx.doi.org/10.3390/polym13193437 |
Sumario: | The fretting fatigue performance of laminated, unidirectional (UD), pin-loaded, carbon fibre-reinforced polymer (CFRP) straps that can be used as bridge hanger cables was investigated at a sustained service temperature of 60 °C. The aim of this paper is to elucidate the influence of the slightly elevated service temperature on the tensile fatigue performance of CFRP straps. First, steady state thermal tests at ambient temperature and at 60 °C are presented, in order to establish the behaviour of the straps at these temperatures. These results indicated that the static tensile performance of the straps is not affected by the increase in temperature. Subsequently, nine upper stress levels (USLs) between 650 and 1400 MPa were chosen in order to establish the S–N curve at 60 °C (frequency 10 Hz; R = 0.1) and a comparison with an existing S–N curve at ambient temperature was made. In general, the straps fatigue limit was slightly decreased by temperature, up to 750 MPa USL, while, for the higher USLs, the straps performed slightly better as compared with the S–N curve at ambient temperature. |
---|