Cargando…
An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications
The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applica...
Autores principales: | Anand, Ankita, Rani, Shalli, Anand, Divya, Aljahdali, Hani Moaiteq, Kerr, Dermot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512885/ https://www.ncbi.nlm.nih.gov/pubmed/34640666 http://dx.doi.org/10.3390/s21196346 |
Ejemplares similares
-
IoT malware detection architecture using a novel channel boosted and squeezed CNN
por: Asam, Muhammad, et al.
Publicado: (2022) -
Deep CNN for Indoor Localization in IoT-Sensor Systems
por: Njima, Wafa, et al.
Publicado: (2019) -
An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones
por: Ankita,, et al.
Publicado: (2021) -
Mastering malware analysis: the complete malware analyst's guide to combating malicious software, APT, cybercrime, and IoT attacks
por: Kleymenov, Alexey, et al.
Publicado: (2019) -
Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model
por: Naeem, Hamad, et al.
Publicado: (2022)