Cargando…

Improved Stability of a Stable Crystal Form C of 6S-5-Methyltetrahydrofolate Calcium Salt, Method Development and Validation of an LC–MS/MS Method for Rat Pharmacokinetic Comparison

Folate is a vitamin beneficial for humans that plays an important role in metabolism, but it cannot be well supplemented by food; it is necessary to supplement it in other ways. Based on this consideration, a novel crystal form C of 6S-5-methyltetrahydrofolate calcium salt (MTHF CAC) was obtained. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Lian, Zenglin, Chen, Hong, Liu, Kang, Jia, Qianghua, Qiu, Feng, Cheng, Yongzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512888/
https://www.ncbi.nlm.nih.gov/pubmed/34641555
http://dx.doi.org/10.3390/molecules26196011
Descripción
Sumario:Folate is a vitamin beneficial for humans that plays an important role in metabolism, but it cannot be well supplemented by food; it is necessary to supplement it in other ways. Based on this consideration, a novel crystal form C of 6S-5-methyltetrahydrofolate calcium salt (MTHF CAC) was obtained. To explore the difference between MTHF CAC and the crystal form Ⅰ of 6S-5-methyltetrahydrofolate calcium salt (MTHF CA) as well as an amorphous product of 6S-5-methyltetrahydrofolate glucosamine salt (MTHF GA), their stability and pharmacokinetic behaviours were compared. The results of high-performance liquid chromatography coupled with ultraviolet detection analysis indicated that MTHF CAC showed a better stability than MTHF CA and MTHF GA. After oral administration of MTHF CAC, MTHF CA, and MTHF GA to male rats, the MTHF concentrations were analysed using a validated liquid chromatography–tandem mass spectrometry, and the pharmacokinetic parameters were compared. The mean residence times (0–t) of MTHF CAC, MTHF CA, and MTHF GA were 3.7 ± 1.9 h, 1.0 ± 0.2 h (p < 0.01), and 1.5 ± 0.3 h (p < 0.05), respectively. The relative bioavailability of MTHF CAC was calculated to be 351% and 218% compared with MTHF CA and MTHF GA, respectively, which suggests that MTHF CAC can be better absorbed and utilized for a longer period of time.