Cargando…
IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses
This paper surveys the deep learning (DL) approaches for intrusion-detection systems (IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses, and a neutral reference architecture. A comparative study of IDSs is provided, with a review of anomaly-based IDSs...
Autores principales: | Albulayhi, Khalid, Smadi, Abdallah A., Sheldon, Frederick T., Abercrombie, Robert K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512890/ https://www.ncbi.nlm.nih.gov/pubmed/34640752 http://dx.doi.org/10.3390/s21196432 |
Ejemplares similares
-
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems
por: Hajj, Suzan, et al.
Publicado: (2023) -
Intrusion Detection System for IoT: Analysis of PSD Robustness
por: Sanogo, Lamoussa, et al.
Publicado: (2023) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022)