Cargando…

Quantum Dot Nanobeads Based Fluorescence Immunoassay for the Quantitative Detection of Sulfamethazine in Chicken and Milk

Sulfamethazine (SMZ) as a broad antibiotic is widely used in livestock and poultry. However, the abuse of SMZ in livestock feed can lead to SMZ residues in food and the resistance of bacteria to drugs. Thus, a method for the detection of SMZ in food is urgently needed. In this study, quantum dot (QD...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Daixian, Liu, Jintao, Wang, Zexiang, Zhou, Shu, Wang, Suhua, Tong, Weipeng, Peng, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512902/
https://www.ncbi.nlm.nih.gov/pubmed/34640926
http://dx.doi.org/10.3390/s21196604
Descripción
Sumario:Sulfamethazine (SMZ) as a broad antibiotic is widely used in livestock and poultry. However, the abuse of SMZ in livestock feed can lead to SMZ residues in food and the resistance of bacteria to drugs. Thus, a method for the detection of SMZ in food is urgently needed. In this study, quantum dot (QD) nanobeads (QBs) were synthesized by encapsulating CdSe/ZnS QDs using a microemulsion technique. The prepared QBs as signal probes were applied in lateral flow immunoassay (LFIA) for the detection of SMZ in chicken and milk. Our proposed method had limits of detection of 0.1138–0.0955 ng/mL and corresponding linear ranges of 0.2–12.5, 0.1–15 ng/mL in chicken and milk samples, respectively. The recovery of LFIA for the detection of SMZ was 80.9–109.4% and 84–101.6% in chicken and milk samples, respectively. Overall, the developed QBs-LFIA had high reliability and excellent potential for rapid and sensitive screening of SMZ in food.