Cargando…
Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network
Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from con...
Autores principales: | Yang, Shih-Hung, Huang, Jyun-We, Huang, Chun-Jui, Chiu, Po-Hsiung, Lai, Hsin-Yi, Chen, You-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512903/ https://www.ncbi.nlm.nih.gov/pubmed/34640699 http://dx.doi.org/10.3390/s21196372 |
Ejemplares similares
-
Neural Decoding for Intracortical Brain–Computer Interfaces
por: Dong, Yuanrui, et al.
Publicado: (2023) -
Fully-Asynchronous Fully-Implicit Variable-Order Variable-Timestep Simulation of Neural Networks
por: Magalhães, Bruno, et al.
Publicado: (2020) -
Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics
por: Szostak, Katarzyna M., et al.
Publicado: (2017) -
Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces
por: Shen, Wen, et al.
Publicado: (2018) -
Demonstration of a Robust All-Silicon-Carbide Intracortical Neural Interface
por: Bernardin, Evans K., et al.
Publicado: (2018)