Cargando…

Thermal Degradation Behavior of Epoxy Resin Containing Modified Carbon Nanotubes

Via the surface-grafting of carbon nanotubes (CNTs) with a silicon-containing flame retardant (PMDA), a novel flame retardant CNTs-PMDA was synthesized. The flame retardancy was tested by cone calorimeter. Compared with pure epoxy resin, the total heat release (THR) and peak heat release rate (PHRR)...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Xiaohui, Wu, Fangyi, Wang, Jiangbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513003/
https://www.ncbi.nlm.nih.gov/pubmed/34641148
http://dx.doi.org/10.3390/polym13193332
Descripción
Sumario:Via the surface-grafting of carbon nanotubes (CNTs) with a silicon-containing flame retardant (PMDA), a novel flame retardant CNTs-PMDA was synthesized. The flame retardancy was tested by cone calorimeter. Compared with pure epoxy resin, the total heat release (THR) and peak heat release rate (PHRR) of epoxy resin containing CNTs-PMDA were significantly reduced, by 44.6% and 24.6%, respectively. Furthermore, thermal degradation behavior of epoxy resin based composite was studied by the thermogravimetric analysis with differences in heating rates. The kinetic parameters of the thermal degradation for epoxy resin composites were evaluated by the Kissinger method and Flynn-Wall-Ozawa method. The results suggested that activation energy values of epoxy resin containing CNTs-PMDA in thermal degradation process were higher than those of pure epoxy resin in the final stage of the thermal degradation process, which was closely related to the final formation of char layer residues. Finally, the results from Dynamic mechanical thermal analysis (DMTA) and Scanning electron microscopy (SEM) measurements exhibited that the functionalization of CNTs with PMDA obviously improved the dispersion of CNTs in the epoxy resin matrix.