Cargando…

A CSI-Based Indoor Positioning System Using Single UWB Ranging Correction

A fingerprint-based localization system is an economic way to solve an indoor positioning problem. However, the traditional off-line fingerprint collection stage is a time-consuming and laborious process which limits the use of fingerprint-based localization systems. In this paper, based on ubiquito...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Keliu, Nsalo Kong, Darryl Franck, Zhang, Kun, Tian, Chuan, Shen, Chong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513089/
https://www.ncbi.nlm.nih.gov/pubmed/34640767
http://dx.doi.org/10.3390/s21196447
Descripción
Sumario:A fingerprint-based localization system is an economic way to solve an indoor positioning problem. However, the traditional off-line fingerprint collection stage is a time-consuming and laborious process which limits the use of fingerprint-based localization systems. In this paper, based on ubiquitous Wireless Fidelity (Wi-Fi) equipment and a low-cost Ultra-Wideband (UWB) ranging system (with only one UWB anchor), a ready-to-use indoor localization system is proposed to realize long-term and high-accuracy indoor positioning. More specifically, in this system, it is divided into two stages: (1) an initial stage, and (2) a positioning stage. In the initial stage, an Inertial Measure Unit (IMU) is used to calculate the position using Pedestrian Dead Reckon (PDR) algorithm within a preset number of steps, and the location-related fingerprints are collected to train a Convolutional Neural Network (CNN) regression model; simultaneously, in order to make the UWB ranging system adapt to the Non-Line-of-Sight (NLoS) environment, the increments of acceleration and angular velocity in IMU and the increments of single UWB ranging measures are correlated to pre-train a Supported Vector Regression (SVR). After reaching the threshold of time or step number, the system is changed into a positioning stage, and the CNN predicts the position calibrated by corrected UWB ranging. At last, a series of practical experiments are conducted in the real environment; the experiment results show that, due to the corrected UWB ranging measures calibrating the CNN parameters in every positioning period, this system has stable localization results in a comparative long-term range. Additionally, it has the advantages of stability, low cost, anti-noise, etc.