Cargando…
Poster Abstract: Protecting User Data Privacy with Adversarial Perturbations
The increased availability of on-body sensors gives researchers access to rich time-series data, many of which are related to human health conditions. Sharing such data can allow cross-institutional collaborations that create advanced data-driven models to make inferences on human well-being. Howeve...
Autores principales: | Wang, Ziqi, Wang, Brian, Srivastava, Mani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513393/ https://www.ncbi.nlm.nih.gov/pubmed/34651144 http://dx.doi.org/10.1145/3412382.3458776 |
Ejemplares similares
-
Personality Privacy Protection Method of Social Users Based on Generative Adversarial Networks
por: Sui, Yi, et al.
Publicado: (2022) -
Data-Free Adversarial Perturbations for Practical Black-Box Attack
por: Huan, Zhaoxin, et al.
Publicado: (2020) -
Abstracts of Poster Session: Abstracts
Publicado: (1987) -
Poster abstracts
Publicado: (2018) -
Perturb and optimize users’ location privacy using geo-indistinguishability and location semantics
por: Yan, Yan, et al.
Publicado: (2022)