Cargando…
COVID-19 Knowledge Graph from semantic integration of biomedical literature and databases
SUMMARY: The global response to the COVID-19 pandemic has led to a rapid increase of scientific literature on this deadly disease. Extracting knowledge from biomedical literature and integrating it with relevant information from curated biological databases is essential to gain insight into COVID-19...
Autores principales: | Chen, Chuming, Ross, Karen E, Gavali, Sachin, Cowart, Julie E, Wu, Cathy H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513397/ https://www.ncbi.nlm.nih.gov/pubmed/34613368 http://dx.doi.org/10.1093/bioinformatics/btab694 |
Ejemplares similares
-
A knowledge graph representation learning approach to predict novel kinase–substrate interactions
por: Gavali, Sachin, et al.
Publicado: (2022) -
RESTful API for iPTMnet: a resource for protein post-translational modification network discovery
por: Gavali, Sachin, et al.
Publicado: (2020) -
Protein ontology on the semantic web for knowledge discovery
por: Chen, Chuming, et al.
Publicado: (2020) -
Thalia: semantic search engine for biomedical abstracts
por: Soto, Axel J, et al.
Publicado: (2019) -
KSFinder—a knowledge graph model for link prediction of novel phosphorylated substrates of kinases
por: Anandakrishnan, Manju, et al.
Publicado: (2023)