Cargando…
Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic a...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513747/ https://www.ncbi.nlm.nih.gov/pubmed/34745345 http://dx.doi.org/10.1039/d1ee02454j |
_version_ | 1784583265357660160 |
---|---|
author | Krishna, Anurag Zhang, Hong Zhou, Zhiwen Gallet, Thibaut Dankl, Mathias Ouellette, Olivier Eickemeyer, Felix T. Fu, Fan Sanchez, Sandy Mensi, Mounir Zakeeruddin, Shaik M. Rothlisberger, Ursula Manjunatha Reddy, G. N. Redinger, Alex Grätzel, Michael Hagfeldt, Anders |
author_facet | Krishna, Anurag Zhang, Hong Zhou, Zhiwen Gallet, Thibaut Dankl, Mathias Ouellette, Olivier Eickemeyer, Felix T. Fu, Fan Sanchez, Sandy Mensi, Mounir Zakeeruddin, Shaik M. Rothlisberger, Ursula Manjunatha Reddy, G. N. Redinger, Alex Grätzel, Michael Hagfeldt, Anders |
author_sort | Krishna, Anurag |
collection | PubMed |
description | We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic acid. The solar cells exhibited high operational stability (maximum powering point tracking at one sun illumination) with a stabilized T(S80) (the time over which the device efficiency reduces to 80% after initial burn-in) of ≈5950 h at 40 °C and a stabilized power conversion efficiency (PCE) over 23%. The origin of high device stability and performance is correlated to the nano/sub-nanoscale molecular level interactions between ligand and perovskite layer, which is further corroborated by comprehensive multiscale characterization. These results provide insights into the modulation of the grain boundaries, local density of states, surface bandgap, and interfacial recombination. Chemical analysis of aged devices showed that molecular passivation suppresses interfacial ion diffusion and inhibits the photoinduced I(2) release that irreversibly degrades the perovskite. The interfacial engineering strategies enabled by multifunctional ligands can expedite the path towards stable PSCs. |
format | Online Article Text |
id | pubmed-8513747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-85137472021-11-04 Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics Krishna, Anurag Zhang, Hong Zhou, Zhiwen Gallet, Thibaut Dankl, Mathias Ouellette, Olivier Eickemeyer, Felix T. Fu, Fan Sanchez, Sandy Mensi, Mounir Zakeeruddin, Shaik M. Rothlisberger, Ursula Manjunatha Reddy, G. N. Redinger, Alex Grätzel, Michael Hagfeldt, Anders Energy Environ Sci Chemistry We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic acid. The solar cells exhibited high operational stability (maximum powering point tracking at one sun illumination) with a stabilized T(S80) (the time over which the device efficiency reduces to 80% after initial burn-in) of ≈5950 h at 40 °C and a stabilized power conversion efficiency (PCE) over 23%. The origin of high device stability and performance is correlated to the nano/sub-nanoscale molecular level interactions between ligand and perovskite layer, which is further corroborated by comprehensive multiscale characterization. These results provide insights into the modulation of the grain boundaries, local density of states, surface bandgap, and interfacial recombination. Chemical analysis of aged devices showed that molecular passivation suppresses interfacial ion diffusion and inhibits the photoinduced I(2) release that irreversibly degrades the perovskite. The interfacial engineering strategies enabled by multifunctional ligands can expedite the path towards stable PSCs. The Royal Society of Chemistry 2021-09-16 /pmc/articles/PMC8513747/ /pubmed/34745345 http://dx.doi.org/10.1039/d1ee02454j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Krishna, Anurag Zhang, Hong Zhou, Zhiwen Gallet, Thibaut Dankl, Mathias Ouellette, Olivier Eickemeyer, Felix T. Fu, Fan Sanchez, Sandy Mensi, Mounir Zakeeruddin, Shaik M. Rothlisberger, Ursula Manjunatha Reddy, G. N. Redinger, Alex Grätzel, Michael Hagfeldt, Anders Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
title | Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
title_full | Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
title_fullStr | Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
title_full_unstemmed | Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
title_short | Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
title_sort | nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513747/ https://www.ncbi.nlm.nih.gov/pubmed/34745345 http://dx.doi.org/10.1039/d1ee02454j |
work_keys_str_mv | AT krishnaanurag nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT zhanghong nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT zhouzhiwen nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT galletthibaut nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT danklmathias nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT ouelletteolivier nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT eickemeyerfelixt nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT fufan nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT sanchezsandy nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT mensimounir nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT zakeeruddinshaikm nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT rothlisbergerursula nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT manjunathareddygn nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT redingeralex nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT gratzelmichael nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics AT hagfeldtanders nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics |