Cargando…

Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics

We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic a...

Descripción completa

Detalles Bibliográficos
Autores principales: Krishna, Anurag, Zhang, Hong, Zhou, Zhiwen, Gallet, Thibaut, Dankl, Mathias, Ouellette, Olivier, Eickemeyer, Felix T., Fu, Fan, Sanchez, Sandy, Mensi, Mounir, Zakeeruddin, Shaik M., Rothlisberger, Ursula, Manjunatha Reddy, G. N., Redinger, Alex, Grätzel, Michael, Hagfeldt, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513747/
https://www.ncbi.nlm.nih.gov/pubmed/34745345
http://dx.doi.org/10.1039/d1ee02454j
_version_ 1784583265357660160
author Krishna, Anurag
Zhang, Hong
Zhou, Zhiwen
Gallet, Thibaut
Dankl, Mathias
Ouellette, Olivier
Eickemeyer, Felix T.
Fu, Fan
Sanchez, Sandy
Mensi, Mounir
Zakeeruddin, Shaik M.
Rothlisberger, Ursula
Manjunatha Reddy, G. N.
Redinger, Alex
Grätzel, Michael
Hagfeldt, Anders
author_facet Krishna, Anurag
Zhang, Hong
Zhou, Zhiwen
Gallet, Thibaut
Dankl, Mathias
Ouellette, Olivier
Eickemeyer, Felix T.
Fu, Fan
Sanchez, Sandy
Mensi, Mounir
Zakeeruddin, Shaik M.
Rothlisberger, Ursula
Manjunatha Reddy, G. N.
Redinger, Alex
Grätzel, Michael
Hagfeldt, Anders
author_sort Krishna, Anurag
collection PubMed
description We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic acid. The solar cells exhibited high operational stability (maximum powering point tracking at one sun illumination) with a stabilized T(S80) (the time over which the device efficiency reduces to 80% after initial burn-in) of ≈5950 h at 40 °C and a stabilized power conversion efficiency (PCE) over 23%. The origin of high device stability and performance is correlated to the nano/sub-nanoscale molecular level interactions between ligand and perovskite layer, which is further corroborated by comprehensive multiscale characterization. These results provide insights into the modulation of the grain boundaries, local density of states, surface bandgap, and interfacial recombination. Chemical analysis of aged devices showed that molecular passivation suppresses interfacial ion diffusion and inhibits the photoinduced I(2) release that irreversibly degrades the perovskite. The interfacial engineering strategies enabled by multifunctional ligands can expedite the path towards stable PSCs.
format Online
Article
Text
id pubmed-8513747
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-85137472021-11-04 Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics Krishna, Anurag Zhang, Hong Zhou, Zhiwen Gallet, Thibaut Dankl, Mathias Ouellette, Olivier Eickemeyer, Felix T. Fu, Fan Sanchez, Sandy Mensi, Mounir Zakeeruddin, Shaik M. Rothlisberger, Ursula Manjunatha Reddy, G. N. Redinger, Alex Grätzel, Michael Hagfeldt, Anders Energy Environ Sci Chemistry We present a facile molecular-level interface engineering strategy to augment the long-term operational and thermal stability of perovskite solar cells (PSCs) by tailoring the interface between the perovskite and hole transporting layer (HTL) with a multifunctional ligand 2,5-thiophenedicarboxylic acid. The solar cells exhibited high operational stability (maximum powering point tracking at one sun illumination) with a stabilized T(S80) (the time over which the device efficiency reduces to 80% after initial burn-in) of ≈5950 h at 40 °C and a stabilized power conversion efficiency (PCE) over 23%. The origin of high device stability and performance is correlated to the nano/sub-nanoscale molecular level interactions between ligand and perovskite layer, which is further corroborated by comprehensive multiscale characterization. These results provide insights into the modulation of the grain boundaries, local density of states, surface bandgap, and interfacial recombination. Chemical analysis of aged devices showed that molecular passivation suppresses interfacial ion diffusion and inhibits the photoinduced I(2) release that irreversibly degrades the perovskite. The interfacial engineering strategies enabled by multifunctional ligands can expedite the path towards stable PSCs. The Royal Society of Chemistry 2021-09-16 /pmc/articles/PMC8513747/ /pubmed/34745345 http://dx.doi.org/10.1039/d1ee02454j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Krishna, Anurag
Zhang, Hong
Zhou, Zhiwen
Gallet, Thibaut
Dankl, Mathias
Ouellette, Olivier
Eickemeyer, Felix T.
Fu, Fan
Sanchez, Sandy
Mensi, Mounir
Zakeeruddin, Shaik M.
Rothlisberger, Ursula
Manjunatha Reddy, G. N.
Redinger, Alex
Grätzel, Michael
Hagfeldt, Anders
Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
title Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
title_full Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
title_fullStr Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
title_full_unstemmed Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
title_short Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
title_sort nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513747/
https://www.ncbi.nlm.nih.gov/pubmed/34745345
http://dx.doi.org/10.1039/d1ee02454j
work_keys_str_mv AT krishnaanurag nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT zhanghong nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT zhouzhiwen nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT galletthibaut nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT danklmathias nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT ouelletteolivier nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT eickemeyerfelixt nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT fufan nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT sanchezsandy nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT mensimounir nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT zakeeruddinshaikm nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT rothlisbergerursula nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT manjunathareddygn nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT redingeralex nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT gratzelmichael nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics
AT hagfeldtanders nanoscaleinterfacialengineeringenableshighlystableandefficientperovskitephotovoltaics