Cargando…
A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fa...
Autores principales: | Liu, Wen Bo, Liang, Sheng Nan, Qin, Xi Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513872/ https://www.ncbi.nlm.nih.gov/pubmed/34644329 http://dx.doi.org/10.1371/journal.pone.0258326 |
Ejemplares similares
-
Principal Manifolds for Data Visualization and Dimension Reduction
por: Gorban, A N, et al.
Publicado: (2007) -
Principal weighted support vector machines for sufficient dimension reduction in binary classification
por: Shin, Seung Jun, et al.
Publicado: (2017) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
por: Sidhu, Gagan S., et al.
Publicado: (2012) -
Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets
por: Yao, Fangzhou, et al.
Publicado: (2012)