Cargando…
Efficient spline regression for neural spiking data
Point process generalized linear models (GLMs) provide a powerful tool for characterizing the coding properties of neural populations. Spline basis functions are often used in point process GLMs, when the relationship between the spiking and driving signals are nonlinear, but common choices for the...
Autores principales: | Sarmashghi, Mehrad, Jadhav, Shantanu P., Eden, Uri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513896/ https://www.ncbi.nlm.nih.gov/pubmed/34644315 http://dx.doi.org/10.1371/journal.pone.0258321 |
Ejemplares similares
-
Integrating Statistical and Machine Learning Approaches for Neural Classification
por: SARMASHGHI, MEHRAD, et al.
Publicado: (2022) -
LASSO type penalized spline regression for binary data
por: Mullah, Muhammad Abu Shadeque, et al.
Publicado: (2021) -
Spline smoothing and nonparametric regression /
por: Eubank, Randall L., 1952-
Publicado: (1988) -
Revisiting Islamic banking efficiency using multivariate adaptive regression splines
por: Saâdaoui, Foued, et al.
Publicado: (2022) -
Regression and Classification With Spline-Based Separable Expansions
por: Govindarajan, Nithin, et al.
Publicado: (2022)