Cargando…
Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles
Virtual high-throughput screening (VHTS) with density functional theory (DFT) and machine-learning (ML)-acceleration is essential in rapid materials discovery. By necessity, efficient DFT-based workflows are carried out with a single density functional approximation (DFA). Nevertheless, properties e...
Autores principales: | Duan, Chenru, Chen, Shuxin, Taylor, Michael G., Liu, Fang, Kulik, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513898/ https://www.ncbi.nlm.nih.gov/pubmed/34745533 http://dx.doi.org/10.1039/d1sc03701c |
Ejemplares similares
-
Low-cost machine learning prediction of excited state properties of iridium-centered phosphors
por: Terrones, Gianmarco G., et al.
Publicado: (2023) -
Seeing Is Believing: Experimental Spin States from
Machine Learning Model Structure Predictions
por: Taylor, Michael G., et al.
Publicado: (2020) -
MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks
por: Nandy, Aditya, et al.
Publicado: (2022) -
Accurate Multiobjective Design in a Space of Millions
of Transition Metal Complexes with Neural-Network-Driven Efficient
Global Optimization
por: Janet, Jon Paul, et al.
Publicado: (2020) -
New Strategies for Direct Methane-to-Methanol Conversion
from Active Learning Exploration of 16 Million Catalysts
por: Nandy, Aditya, et al.
Publicado: (2022)