Cargando…
Temperature-dependent modulation by biaryl-based monomers of the chain length and morphology of biphenyl-based supramolecular polymers
Supramolecular copolymerizations offer attractive options to introduce structural and functional diversity in supramolecular polymer materials. Yet, general principles and structure–property relationships for rational comonomer design remain lacking. Here, we report on the supramolecular (co)aggrega...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513997/ https://www.ncbi.nlm.nih.gov/pubmed/34745531 http://dx.doi.org/10.1039/d1sc03974a |
Sumario: | Supramolecular copolymerizations offer attractive options to introduce structural and functional diversity in supramolecular polymer materials. Yet, general principles and structure–property relationships for rational comonomer design remain lacking. Here, we report on the supramolecular (co)aggregation of a phenylpyridine and bipyridine derivative of a recently reported biphenyl tetracarboxamide-based monomer. We show that both arylpyridines are poor monomers for supramolecular homopolymerizations. However, the two arylpyridines efficiently influence supramolecular polymers of a biphenyl-based polymer. The phenylpyridine derivatives primarily sequestrate biphenyl monomers, while the bipyridine intercalates into the polymers at high temperatures. Thereby, these two poorly homopolymerizing monomers allow for a fine control over the length of the biphenyl-based supramolecular polymers. As such, our results highlight the potential to control the structure and morphology of supramolecular polymers by tailoring the electronic properties of additives. |
---|