Cargando…
The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure–function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to na...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514002/ https://www.ncbi.nlm.nih.gov/pubmed/34745526 http://dx.doi.org/10.1039/d1sc01734a |
_version_ | 1784583310923530240 |
---|---|
author | Ash, Philip A. Kendall-Price, Sophie E. T. Evans, Rhiannon M. Carr, Stephen B. Brasnett, Amelia R. Morra, Simone Rowbotham, Jack S. Hidalgo, Ricardo Healy, Adam J. Cinque, Gianfelice Frogley, Mark D. Armstrong, Fraser A. Vincent, Kylie A. |
author_facet | Ash, Philip A. Kendall-Price, Sophie E. T. Evans, Rhiannon M. Carr, Stephen B. Brasnett, Amelia R. Morra, Simone Rowbotham, Jack S. Hidalgo, Ricardo Healy, Adam J. Cinque, Gianfelice Frogley, Mark D. Armstrong, Fraser A. Vincent, Kylie A. |
author_sort | Ash, Philip A. |
collection | PubMed |
description | Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure–function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN(−) ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle. |
format | Online Article Text |
id | pubmed-8514002 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-85140022021-11-04 The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase Ash, Philip A. Kendall-Price, Sophie E. T. Evans, Rhiannon M. Carr, Stephen B. Brasnett, Amelia R. Morra, Simone Rowbotham, Jack S. Hidalgo, Ricardo Healy, Adam J. Cinque, Gianfelice Frogley, Mark D. Armstrong, Fraser A. Vincent, Kylie A. Chem Sci Chemistry Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure–function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN(−) ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle. The Royal Society of Chemistry 2021-06-03 /pmc/articles/PMC8514002/ /pubmed/34745526 http://dx.doi.org/10.1039/d1sc01734a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Ash, Philip A. Kendall-Price, Sophie E. T. Evans, Rhiannon M. Carr, Stephen B. Brasnett, Amelia R. Morra, Simone Rowbotham, Jack S. Hidalgo, Ricardo Healy, Adam J. Cinque, Gianfelice Frogley, Mark D. Armstrong, Fraser A. Vincent, Kylie A. The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase |
title | The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase |
title_full | The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase |
title_fullStr | The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase |
title_full_unstemmed | The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase |
title_short | The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase |
title_sort | crystalline state as a dynamic system: ir microspectroscopy under electrochemical control for a [nife] hydrogenase |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514002/ https://www.ncbi.nlm.nih.gov/pubmed/34745526 http://dx.doi.org/10.1039/d1sc01734a |
work_keys_str_mv | AT ashphilipa thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT kendallpricesophieet thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT evansrhiannonm thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT carrstephenb thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT brasnettameliar thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT morrasimone thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT rowbothamjacks thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT hidalgoricardo thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT healyadamj thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT cinquegianfelice thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT frogleymarkd thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT armstrongfrasera thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT vincentkyliea thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT ashphilipa crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT kendallpricesophieet crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT evansrhiannonm crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT carrstephenb crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT brasnettameliar crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT morrasimone crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT rowbothamjacks crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT hidalgoricardo crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT healyadamj crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT cinquegianfelice crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT frogleymarkd crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT armstrongfrasera crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase AT vincentkyliea crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase |