Cargando…

The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase

Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure–function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to na...

Descripción completa

Detalles Bibliográficos
Autores principales: Ash, Philip A., Kendall-Price, Sophie E. T., Evans, Rhiannon M., Carr, Stephen B., Brasnett, Amelia R., Morra, Simone, Rowbotham, Jack S., Hidalgo, Ricardo, Healy, Adam J., Cinque, Gianfelice, Frogley, Mark D., Armstrong, Fraser A., Vincent, Kylie A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514002/
https://www.ncbi.nlm.nih.gov/pubmed/34745526
http://dx.doi.org/10.1039/d1sc01734a
_version_ 1784583310923530240
author Ash, Philip A.
Kendall-Price, Sophie E. T.
Evans, Rhiannon M.
Carr, Stephen B.
Brasnett, Amelia R.
Morra, Simone
Rowbotham, Jack S.
Hidalgo, Ricardo
Healy, Adam J.
Cinque, Gianfelice
Frogley, Mark D.
Armstrong, Fraser A.
Vincent, Kylie A.
author_facet Ash, Philip A.
Kendall-Price, Sophie E. T.
Evans, Rhiannon M.
Carr, Stephen B.
Brasnett, Amelia R.
Morra, Simone
Rowbotham, Jack S.
Hidalgo, Ricardo
Healy, Adam J.
Cinque, Gianfelice
Frogley, Mark D.
Armstrong, Fraser A.
Vincent, Kylie A.
author_sort Ash, Philip A.
collection PubMed
description Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure–function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN(−) ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.
format Online
Article
Text
id pubmed-8514002
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-85140022021-11-04 The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase Ash, Philip A. Kendall-Price, Sophie E. T. Evans, Rhiannon M. Carr, Stephen B. Brasnett, Amelia R. Morra, Simone Rowbotham, Jack S. Hidalgo, Ricardo Healy, Adam J. Cinque, Gianfelice Frogley, Mark D. Armstrong, Fraser A. Vincent, Kylie A. Chem Sci Chemistry Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure–function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN(−) ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle. The Royal Society of Chemistry 2021-06-03 /pmc/articles/PMC8514002/ /pubmed/34745526 http://dx.doi.org/10.1039/d1sc01734a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Ash, Philip A.
Kendall-Price, Sophie E. T.
Evans, Rhiannon M.
Carr, Stephen B.
Brasnett, Amelia R.
Morra, Simone
Rowbotham, Jack S.
Hidalgo, Ricardo
Healy, Adam J.
Cinque, Gianfelice
Frogley, Mark D.
Armstrong, Fraser A.
Vincent, Kylie A.
The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
title The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
title_full The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
title_fullStr The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
title_full_unstemmed The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
title_short The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase
title_sort crystalline state as a dynamic system: ir microspectroscopy under electrochemical control for a [nife] hydrogenase
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514002/
https://www.ncbi.nlm.nih.gov/pubmed/34745526
http://dx.doi.org/10.1039/d1sc01734a
work_keys_str_mv AT ashphilipa thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT kendallpricesophieet thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT evansrhiannonm thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT carrstephenb thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT brasnettameliar thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT morrasimone thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT rowbothamjacks thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT hidalgoricardo thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT healyadamj thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT cinquegianfelice thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT frogleymarkd thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT armstrongfrasera thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT vincentkyliea thecrystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT ashphilipa crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT kendallpricesophieet crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT evansrhiannonm crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT carrstephenb crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT brasnettameliar crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT morrasimone crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT rowbothamjacks crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT hidalgoricardo crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT healyadamj crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT cinquegianfelice crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT frogleymarkd crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT armstrongfrasera crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase
AT vincentkyliea crystallinestateasadynamicsystemirmicrospectroscopyunderelectrochemicalcontrolforanifehydrogenase