Cargando…
A Method for Expanding Mass Range on a Multi-Turn Time-of-Flight Mass Spectrometer by a Lap Superimposed Spectrum
A time-of-flight mass spectrometer that uses a closed-orbit flight path can achieve a high mass resolving power and a high mass accuracy with a small instrument footprint. It has long been known that a drawback to a closed flight path is an obtained spectrum may contain peaks by ions at a different...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Mass Spectrometry Society of Japan
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514288/ https://www.ncbi.nlm.nih.gov/pubmed/34703719 http://dx.doi.org/10.5702/massspectrometry.A0098 |
Sumario: | A time-of-flight mass spectrometer that uses a closed-orbit flight path can achieve a high mass resolving power and a high mass accuracy with a small instrument footprint. It has long been known that a drawback to a closed flight path is an obtained spectrum may contain peaks by ions at a different number of laps. A lower m/z ion may overtake higher m/z ions, resulting in the peak being superimposed on an acquired mass spectrum; therefore, such a mass bandwidth of the analyzer is limited to a narrow range given the current situation. However, recent research has documented a solution to the problem based on careful study of the equation of motion of an ion in a closed-path analyzer. All of the ions in the analyzer remain in motion in orbit by the nature of the closed flight path, thus resulting in a superimposed spectrum with the width of the orbital period of the highest mass in the sample matrix, which contains several different lap numbers. When target ions for the sample are known in advance, the time-of-flight for a given m/z can be determined regardless of the lap number under given analyzer conditions, and peak assignment can be self-validated by comparison to a mass spectrum acquired at a different lap condition. Furthermore, the m/z value for an unknown ion can also be determined by comparing time-of-flight values on spectra acquired at different lap conditions. |
---|