Cargando…
Biologically informed deep neural network for prostate cancer discovery
The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge(1,2). Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in cli...
Autores principales: | Elmarakeby, Haitham A., Hwang, Justin, Arafeh, Rand, Crowdis, Jett, Gang, Sydney, Liu, David, AlDubayan, Saud H., Salari, Keyan, Kregel, Steven, Richter, Camden, Arnoff, Taylor E., Park, Jihye, Hahn, William C., Van Allen, Eliezer M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514339/ https://www.ncbi.nlm.nih.gov/pubmed/34552244 http://dx.doi.org/10.1038/s41586-021-03922-4 |
Ejemplares similares
-
CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor-targeting therapies
por: Hwang, Justin H, et al.
Publicado: (2022) -
CoMut: visualizing integrated molecular information with comutation plots
por: Crowdis, Jett, et al.
Publicado: (2020) -
Systematic Interrogation of Tumor Cell Resistance to Chimeric Antigen Receptor T-cell Therapy in Pancreatic Cancer
por: Hagel, Kimberly R., et al.
Publicado: (2023) -
Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine
por: Conway, Jake R., et al.
Publicado: (2018) -
Integrative Analysis of Germline Rare Variants in Clear and Non-Clear Cell Renal Cell Carcinoma
por: Han, Seunghun, et al.
Publicado: (2023)