Cargando…
Cross-modal semantic autoencoder with embedding consensus
Cross-modal retrieval has become a topic of popularity, since multi-data is heterogeneous and the similarities between different forms of information are worthy of attention. Traditional single-modal methods reconstruct the original information and lack of considering the semantic similarity between...
Autores principales: | Sun, Shengzi, Guo, Binghui, Mi, Zhilong, Zheng, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514517/ https://www.ncbi.nlm.nih.gov/pubmed/34645836 http://dx.doi.org/10.1038/s41598-021-92750-7 |
Ejemplares similares
-
Semantics-Reconstructing Hashing for Cross-Modal Retrieval
por: Zhang, Peng-Fei, et al.
Publicado: (2020) -
Cross-modal autoencoder framework learns holistic representations of cardiovascular state
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023) -
Gene Saturation: An Approach to Assess Exploration Stage of Gene Interaction Networks
por: Yin, Ziqiao, et al.
Publicado: (2019) -
LAMP: disease classification derived from layered assessment on modules and pathways in the human gene network
por: Mi, Zhilong, et al.
Publicado: (2020) -
Learning to sense from events via semantic variational autoencoder
por: Gôlo, Marcos Paulo Silva, et al.
Publicado: (2021)