Cargando…
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
In cytological examination, suspicious cells are evaluated regarding malignancy and cancer type. To assist this, we previously proposed an automated method based on supervised learning that classifies cells in lung cytological images as benign or malignant. However, it is often difficult to label al...
Autores principales: | Teramoto, Atsushi, Kiriyama, Yuka, Tsukamoto, Tetsuya, Sakurai, Eiko, Michiba, Ayano, Imaizumi, Kazuyoshi, Saito, Kuniaki, Fujita, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514584/ https://www.ncbi.nlm.nih.gov/pubmed/34645863 http://dx.doi.org/10.1038/s41598-021-99246-4 |
Ejemplares similares
-
Mutual stain conversion between Giemsa and Papanicolaou in cytological images using cycle generative adversarial network
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Comparison of Fine-Tuned Deep Convolutional Neural Networks for the Automated Classification of Lung Cancer Cytology Images with Integration of Additional Classifiers
por: Tsukamoto, Tetsuya, et al.
Publicado: (2022) -
Automated Classification of Idiopathic Pulmonary Fibrosis in Pathological Images Using Convolutional Neural Network and Generative Adversarial Networks
por: Teramoto, Atsushi, et al.
Publicado: (2022) -
Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks
por: Teramoto, Atsushi, et al.
Publicado: (2020) -
γH2AX, a DNA Double-Strand Break Marker, Correlates with PD-L1 Expression in Smoking-Related Lung Adenocarcinoma
por: Sakurai, Eiko, et al.
Publicado: (2022)