Cargando…
Machine Learning for Subtyping Concussion Using a Clustering Approach
Background: Concussion subtypes are typically organized into commonly affected symptom areas or a combination of affected systems, an approach that may be flawed by bias in conceptualization or the inherent limitations of interdisciplinary expertise. Objective: The purpose of this study was to deter...
Autores principales: | Rosenblatt, Cirelle K., Harriss, Alexandra, Babul, Aliya-Nur, Rosenblatt, Samuel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514654/ https://www.ncbi.nlm.nih.gov/pubmed/34658816 http://dx.doi.org/10.3389/fnhum.2021.716643 |
Ejemplares similares
-
Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors
por: Thanjavur, Karun, et al.
Publicado: (2021) -
Disrupted Information Flow in Resting-State in Adolescents With Sports Related Concussion
por: Hristopulos, Dionissios T., et al.
Publicado: (2019) -
Methodological Problems With Online Concussion Testing
por: Holden, Jameson, et al.
Publicado: (2020) -
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
por: Duan, Lijuan, et al.
Publicado: (2020) -
Localization and Identification of Brain Microstructural Abnormalities in Paediatric Concussion
por: Stillo, David, et al.
Publicado: (2021)