Cargando…
Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity
Deep neural networks (DNNs) can resolve real-world categorization tasks with apparent human-level performance. However, true equivalence of behavioral performance between humans and their DNN models requires that their internal mechanisms process equivalent features of the stimulus. To develop such...
Autores principales: | Daube, Christoph, Xu, Tian, Zhan, Jiayu, Webb, Andrew, Ince, Robin A.A., Garrod, Oliver G.B., Schyns, Philippe G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515012/ https://www.ncbi.nlm.nih.gov/pubmed/34693374 http://dx.doi.org/10.1016/j.patter.2021.100348 |
Ejemplares similares
-
Modeling individual preferences reveals that face beauty is not universally perceived across cultures
por: Zhan, Jiayu, et al.
Publicado: (2021) -
Facial expressions elicit multiplexed perceptions of emotion categories and dimensions
por: Liu, Meng, et al.
Publicado: (2022) -
Dynamics of Trimming the Content of Face Representations for Categorization in the Brain
por: van Rijsbergen, Nicola J., et al.
Publicado: (2009) -
Space-by-time manifold representation of dynamic facial expressions for emotion categorization
por: Delis, Ioannis, et al.
Publicado: (2016) -
A Common Neural Account for Social and Nonsocial Decisions
por: Arabadzhiyska, Desislava H., et al.
Publicado: (2022)