Cargando…

Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks

Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yajing, Jia, Shanshan, Yu, Zhaofei, Liu, Jian K., Huang, Tiejun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515013/
https://www.ncbi.nlm.nih.gov/pubmed/34693375
http://dx.doi.org/10.1016/j.patter.2021.100350
_version_ 1784583525485248512
author Zheng, Yajing
Jia, Shanshan
Yu, Zhaofei
Liu, Jian K.
Huang, Tiejun
author_facet Zheng, Yajing
Jia, Shanshan
Yu, Zhaofei
Liu, Jian K.
Huang, Tiejun
author_sort Zheng, Yajing
collection PubMed
description Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an explainable model that reveals how a population of neurons work together to encode the larger field of natural scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent connection plays a key role in encoding complex dynamic visual scenes while learning biological computational underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the locations of the spatiotemporal receptive fields of ganglion cells.
format Online
Article
Text
id pubmed-8515013
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-85150132021-10-21 Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks Zheng, Yajing Jia, Shanshan Yu, Zhaofei Liu, Jian K. Huang, Tiejun Patterns (N Y) Article Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an explainable model that reveals how a population of neurons work together to encode the larger field of natural scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent connection plays a key role in encoding complex dynamic visual scenes while learning biological computational underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the locations of the spatiotemporal receptive fields of ganglion cells. Elsevier 2021-09-17 /pmc/articles/PMC8515013/ /pubmed/34693375 http://dx.doi.org/10.1016/j.patter.2021.100350 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zheng, Yajing
Jia, Shanshan
Yu, Zhaofei
Liu, Jian K.
Huang, Tiejun
Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
title Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
title_full Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
title_fullStr Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
title_full_unstemmed Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
title_short Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
title_sort unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515013/
https://www.ncbi.nlm.nih.gov/pubmed/34693375
http://dx.doi.org/10.1016/j.patter.2021.100350
work_keys_str_mv AT zhengyajing unravelingneuralcodingofdynamicnaturalvisualscenesviaconvolutionalrecurrentneuralnetworks
AT jiashanshan unravelingneuralcodingofdynamicnaturalvisualscenesviaconvolutionalrecurrentneuralnetworks
AT yuzhaofei unravelingneuralcodingofdynamicnaturalvisualscenesviaconvolutionalrecurrentneuralnetworks
AT liujiank unravelingneuralcodingofdynamicnaturalvisualscenesviaconvolutionalrecurrentneuralnetworks
AT huangtiejun unravelingneuralcodingofdynamicnaturalvisualscenesviaconvolutionalrecurrentneuralnetworks