Cargando…
Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks
Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fi...
Autores principales: | Zheng, Yajing, Jia, Shanshan, Yu, Zhaofei, Liu, Jian K., Huang, Tiejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515013/ https://www.ncbi.nlm.nih.gov/pubmed/34693375 http://dx.doi.org/10.1016/j.patter.2021.100350 |
Ejemplares similares
-
Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?
por: De Cesarei, Andrea, et al.
Publicado: (2021) -
Efficient coding of natural scenes improves neural system identification
por: Qiu, Yongrong, et al.
Publicado: (2023) -
The spatial structure of correlations in natural scenes shapes neural coding in mouse primary visual cortex
por: Rikhye, Rajeev V, et al.
Publicado: (2014) -
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Interpreting the retinal neural code for natural scenes: From computations to neurons
por: Maheswaranathan, Niru, et al.
Publicado: (2023)