Cargando…

1,3-Bis(carboxymethyl)imidazolium Chloride as a Sustainable, Recyclable, and Metal-Free Ionic Catalyst for the Biginelli Multicomponent Reaction in Neat Condition

[Image: see text] A simple and novel methodology has been developed for the synthesis of 1,3-bis(carboxymethyl)imidazolium chloride [BCMIM][Cl] salt. The ionic salt [BCMIM][Cl] catalyzed the reaction among arylaldehydes; the substituted 1,3-dicarbonyl compounds and urea/thiourea at 80 °C with 5 mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Madivalappa Davanagere, Prabhakara, Maiti, Barnali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515400/
https://www.ncbi.nlm.nih.gov/pubmed/34660965
http://dx.doi.org/10.1021/acsomega.1c02976
Descripción
Sumario:[Image: see text] A simple and novel methodology has been developed for the synthesis of 1,3-bis(carboxymethyl)imidazolium chloride [BCMIM][Cl] salt. The ionic salt [BCMIM][Cl] catalyzed the reaction among arylaldehydes; the substituted 1,3-dicarbonyl compounds and urea/thiourea at 80 °C with 5 mol % under neat condition provided the substituted dihydropyrimidin-2(1H)-one/thiones in the synthesis step with yields of up to 96%. In addition, we synthesized the commercially available drug Monastrol by employing this methodology. The new synthesis method employs the benefits of a broad substrate scope, short reaction time, and high atom economy along with low catalyst loading in neat conditions, and is devoid of chromatographic purification. The ionic salt [BCMIM][Cl] was recycled and reused up to six cycles without substantial damage of its catalytic efficiency.