Cargando…
lncRNA ST8SIA6-AS1 facilitates proliferation and invasion in liver cancer by regulating miR-142-3p
Long non-coding RNA ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 6 antisense 1 (ST8SIA6-AS1) has been identified as a novel oncogene in breast cancer. However, its involvement in liver cancer has remained elusive. In the present study, the expression of ST8SIA6-AS1 and microRNA (miR)-142-3p in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515546/ https://www.ncbi.nlm.nih.gov/pubmed/34659494 http://dx.doi.org/10.3892/etm.2021.10783 |
Sumario: | Long non-coding RNA ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 6 antisense 1 (ST8SIA6-AS1) has been identified as a novel oncogene in breast cancer. However, its involvement in liver cancer has remained elusive. In the present study, the expression of ST8SIA6-AS1 and microRNA (miR)-142-3p in liver cancer tissues and cell lines was detected by reverse transcription-quantitative PCR. Tumor cell proliferation, migration and invasion assays were performed to determine the biological functions of ST8SIA6-AS1. The targeting interaction between ST8SIA6-AS1 and miR-142-3p predicted by bioinformatics was verified by a luciferase reporter assay and a biotin pulldown assay. The results indicated that ST8SIA6-AS1 was highly expressed in liver cancer tissues and cell lines, and the high expression of ST8SIA6-AS1 in liver cancer tissues was associated with poor prognosis. Knockdown of ST8SIA6-AS1 inhibited the proliferation, metastasis and invasion of liver cancer cells. Mechanistic investigation revealed that ST8SIA6-AS1 sequesters miR-142-3p and negatively regulates miR-142-3p expression in liver cancer cells. Further investigation indicated that the tumor-inhibitory effect of ST8SIA6-AS1 silencing was reversed by miR-142-3p depletion. In conclusion, ST8SIA6-AS1 was indicated to exert an oncogenic function in liver cancer by competitively sponging miR-142-3p. |
---|