Cargando…
Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection
INTRODUCTION: In Alzheimer's disease, asymptomatic patients may have amyloid deposition, but predicting their progression rate remains a substantial challenge with implications for clinical trial enrollment. Here, we demonstrate an artificial intelligence approach to use baseline clinical infor...
Autores principales: | Reith, Fabian H., Mormino, Elizabeth C., Zaharchuk, Greg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515556/ https://www.ncbi.nlm.nih.gov/pubmed/34692985 http://dx.doi.org/10.1002/trc2.12212 |
Ejemplares similares
-
Editorial: Machine Learning in Neuroimaging
por: Federau, Christian, et al.
Publicado: (2021) -
Machine learning based multi-modal prediction of future decline toward Alzheimer’s disease: An empirical study
por: Karaman, Batuhan K., et al.
Publicado: (2022) -
Application of statistical machine learning in biomarker selection
por: Vashistha, Ritwik, et al.
Publicado: (2023) -
Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions
por: Javeed, Ashir, et al.
Publicado: (2023) -
Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review
por: Wilczyńska, Karolina, et al.
Publicado: (2020)