Cargando…
High Density of Quantum-Sized Silicon Nanowires with Different Polytypes Grown with Bimetallic Catalysts
[Image: see text] When Si nanowires (NWs) have diameters below about 10 nm, their band gap increases as their diameter decreases; moreover, it can be direct if the material adopts the metastable diamond hexagonal structure. To prepare such wires, we have developed an original variant of the vapor–li...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515598/ https://www.ncbi.nlm.nih.gov/pubmed/34660996 http://dx.doi.org/10.1021/acsomega.1c03630 |
Sumario: | [Image: see text] When Si nanowires (NWs) have diameters below about 10 nm, their band gap increases as their diameter decreases; moreover, it can be direct if the material adopts the metastable diamond hexagonal structure. To prepare such wires, we have developed an original variant of the vapor–liquid–solid process based on the use of a bimetallic Cu–Sn catalyst in a plasma-enhanced chemical vapor deposition reactor, which allows us to prevent droplets from coalescing and favors the growth of a high density of NWs with a narrow diameter distribution. Controlling the deposited thickness of the catalyst materials at the sub-nanometer level allows us to get dense arrays (up to 6 × 10(10) cm(–2)) of very-small-diameter NWs of 6 nm on average (standard deviation of 1.6 nm) with crystalline cores of about 4 nm. The transmission electron microscopy analysis shows that both 3C and 2H polytypes are present, with the 2H hexagonal diamond structure appearing in 5–13% of the analyzed NWs per sample. |
---|