Cargando…
Chemistrees: Data-Driven Identification of Reaction Pathways via Machine Learning
[Image: see text] We propose to analyze molecular dynamics (MD) output via a supervised machine learning (ML) algorithm, the decision tree. The approach aims to identify the predominant geometric features which correlate with trajectories that transition between two arbitrarily defined states. The d...
Autores principales: | Roet, Sander, Daub, Christopher D., Riccardi, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515787/ https://www.ncbi.nlm.nih.gov/pubmed/34555907 http://dx.doi.org/10.1021/acs.jctc.1c00458 |
Ejemplares similares
-
Predicting material microstructure evolution via data-driven machine learning
por: Kautz, Elizabeth J.
Publicado: (2021) -
Machine Learning of Reaction Properties via Learned
Representations of the Condensed Graph of Reaction
por: Heid, Esther, et al.
Publicado: (2021) -
Chinese diabetes datasets for data-driven machine learning
por: Zhao, Qinpei, et al.
Publicado: (2023) -
Machine Learning Descriptors for Data‐Driven Catalysis Study
por: Mou, Li‐Hui, et al.
Publicado: (2023) -
Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches
por: Gonçalves, Daniel M., et al.
Publicado: (2023)