Cargando…

Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae

Candida albicans and Staphylococcus aureus are pathogens commonly isolated from bloodstream infections worldwide. While coinfection by both pathogens is associated with mixed biofilms and more severe clinical manifestations, due to the combined expression of virulence and resistance factors, effecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Scheunemann, Gaby, Fortes, Bruna N., Lincopan, Nilton, Ishida, Kelly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515925/
https://www.ncbi.nlm.nih.gov/pubmed/34643410
http://dx.doi.org/10.1128/Spectrum.00744-21
_version_ 1784583710773870592
author Scheunemann, Gaby
Fortes, Bruna N.
Lincopan, Nilton
Ishida, Kelly
author_facet Scheunemann, Gaby
Fortes, Bruna N.
Lincopan, Nilton
Ishida, Kelly
author_sort Scheunemann, Gaby
collection PubMed
description Candida albicans and Staphylococcus aureus are pathogens commonly isolated from bloodstream infections worldwide. While coinfection by both pathogens is associated with mixed biofilms and more severe clinical manifestations, due to the combined expression of virulence and resistance factors, effective treatments remain a challenge. In this study, we evaluated the activity of echinocandins, especially caspofungin, against mixed biofilms of C. albicans and methicillin-resistant (MRSA) or methicillin-susceptible S. aureus (MSSA) and their effectiveness in vivo using the Galleria mellonella coinfection model. Although caspofungin (CAS) and micafungin (MFG) inhibited the mixed biofilm formation, with CAS exhibiting inhibitory activity at lower concentrations, only CAS was active against preformed mixed biofilms. CAS significantly decreased the total biomass of mixed biofilms at concentrations of ≥2 μg/ml, whereas the microbial viability was reduced at high concentrations (32 to 128 μg/ml), leading to fungus and bacterium cell wall disruption and fungal cell enlargement. Notably, CAS (20 or 50 mg/kg of body weight) treatment led to an increased survival and improved outcomes of G. mellonella larvae coinfected with C. albicans and MRSA, since a significant reduction of fungal and bacterial burden in larval tissues was achieved with induction of granuloma formation. Our results reveal that CAS can be a therapeutic option for the treatment of mixed infections caused by C. albicans and S. aureus, supporting additional investigation. IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization. It was estimated that 27 to 56% of bloodstream infections by C. albicans are polymicrobial, with S. aureus being one of the microorganisms commonly coisolated worldwide. About 80% of infections are associated with biofilms by single or mixed species that can be formed on invasive medical devices, e.g., catheter, and are considered a dissemination source. The increased resistance to antimicrobials in bacterial and fungal cells when they are in biofilms is the most medically relevant behavior that frequently results in therapeutic failure. Although there are several studies evaluating treatments for polymicrobial infections associated or not with biofilms, there is still no consensus on an effective antimicrobial therapy to combat the coinfection by bacteria and fungi.
format Online
Article
Text
id pubmed-8515925
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85159252021-11-08 Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae Scheunemann, Gaby Fortes, Bruna N. Lincopan, Nilton Ishida, Kelly Microbiol Spectr Research Article Candida albicans and Staphylococcus aureus are pathogens commonly isolated from bloodstream infections worldwide. While coinfection by both pathogens is associated with mixed biofilms and more severe clinical manifestations, due to the combined expression of virulence and resistance factors, effective treatments remain a challenge. In this study, we evaluated the activity of echinocandins, especially caspofungin, against mixed biofilms of C. albicans and methicillin-resistant (MRSA) or methicillin-susceptible S. aureus (MSSA) and their effectiveness in vivo using the Galleria mellonella coinfection model. Although caspofungin (CAS) and micafungin (MFG) inhibited the mixed biofilm formation, with CAS exhibiting inhibitory activity at lower concentrations, only CAS was active against preformed mixed biofilms. CAS significantly decreased the total biomass of mixed biofilms at concentrations of ≥2 μg/ml, whereas the microbial viability was reduced at high concentrations (32 to 128 μg/ml), leading to fungus and bacterium cell wall disruption and fungal cell enlargement. Notably, CAS (20 or 50 mg/kg of body weight) treatment led to an increased survival and improved outcomes of G. mellonella larvae coinfected with C. albicans and MRSA, since a significant reduction of fungal and bacterial burden in larval tissues was achieved with induction of granuloma formation. Our results reveal that CAS can be a therapeutic option for the treatment of mixed infections caused by C. albicans and S. aureus, supporting additional investigation. IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization. It was estimated that 27 to 56% of bloodstream infections by C. albicans are polymicrobial, with S. aureus being one of the microorganisms commonly coisolated worldwide. About 80% of infections are associated with biofilms by single or mixed species that can be formed on invasive medical devices, e.g., catheter, and are considered a dissemination source. The increased resistance to antimicrobials in bacterial and fungal cells when they are in biofilms is the most medically relevant behavior that frequently results in therapeutic failure. Although there are several studies evaluating treatments for polymicrobial infections associated or not with biofilms, there is still no consensus on an effective antimicrobial therapy to combat the coinfection by bacteria and fungi. American Society for Microbiology 2021-10-13 /pmc/articles/PMC8515925/ /pubmed/34643410 http://dx.doi.org/10.1128/Spectrum.00744-21 Text en Copyright © 2021 Scheunemann et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Scheunemann, Gaby
Fortes, Bruna N.
Lincopan, Nilton
Ishida, Kelly
Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae
title Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae
title_full Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae
title_fullStr Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae
title_full_unstemmed Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae
title_short Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae
title_sort caspofungin inhibits mixed biofilms of candida albicans and methicillin-resistant staphylococcus aureus and displays effectiveness in coinfected galleria mellonella larvae
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515925/
https://www.ncbi.nlm.nih.gov/pubmed/34643410
http://dx.doi.org/10.1128/Spectrum.00744-21
work_keys_str_mv AT scheunemanngaby caspofungininhibitsmixedbiofilmsofcandidaalbicansandmethicillinresistantstaphylococcusaureusanddisplayseffectivenessincoinfectedgalleriamellonellalarvae
AT fortesbrunan caspofungininhibitsmixedbiofilmsofcandidaalbicansandmethicillinresistantstaphylococcusaureusanddisplayseffectivenessincoinfectedgalleriamellonellalarvae
AT lincopannilton caspofungininhibitsmixedbiofilmsofcandidaalbicansandmethicillinresistantstaphylococcusaureusanddisplayseffectivenessincoinfectedgalleriamellonellalarvae
AT ishidakelly caspofungininhibitsmixedbiofilmsofcandidaalbicansandmethicillinresistantstaphylococcusaureusanddisplayseffectivenessincoinfectedgalleriamellonellalarvae