Cargando…
The Local-Balanced Model for Improved Machine Learning Outcomes on Mass Spectrometry Data Sets and Other Instrumental Data
One unifying challenge when classifying biological samples with mass spectrometry data is overcoming the obstacle of sample-to-sample variability so that differences between groups, such as between a healthy set and a disease set, can be identified. Similarly, when the same sample is re-analyzed und...
Autores principales: | Desaire, Heather, Patabandige, Milani Wijeweera, Hua, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516084/ https://www.ncbi.nlm.nih.gov/pubmed/33580828 http://dx.doi.org/10.1007/s00216-020-03117-2 |
Ejemplares similares
-
Advances, obstacles, and opportunities for machine learning in proteomics
por: Desaire, Heather, et al.
Publicado: (2022) -
Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry
por: Verbeeck, Nico, et al.
Publicado: (2019) -
Mass Spectrometry-Based Disulfide Mapping of Lysyl Oxidase-like 2
por: Meier, Alex A., et al.
Publicado: (2022) -
Machine learning as an instrument for data unfolding
por: Glazov, Alexander
Publicado: (2018) -
Quality assessment and interference detection in targeted mass spectrometry data using machine learning
por: Toghi Eshghi, Shadi, et al.
Publicado: (2018)