Cargando…
Lithological information extraction and classification in hyperspectral remote sensing data using Backpropagation Neural Network
The purposes are to solve the isomorphism encountered while processing hyperspectral remote sensing data and improve the accuracy of hyperspectral remote sensing data in extracting and classifying lithological information. Taking rocks as the research object, Backpropagation Neural Network (BPNN) is...
Autores principales: | Wang, Zhengyang, Tian, Shufang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516202/ https://www.ncbi.nlm.nih.gov/pubmed/34648508 http://dx.doi.org/10.1371/journal.pone.0254542 |
Ejemplares similares
-
An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification
por: Cao, Jianfang, et al.
Publicado: (2014) -
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
por: Cao, Jianfang, et al.
Publicado: (2016) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Leveraging Guided Backpropagation to Select Convolutional Neural Networks for Plant Classification
por: Mostafa, Sakib, et al.
Publicado: (2022) -
A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data
por: EL-Omairi, Mohamed Ali, et al.
Publicado: (2023)