Cargando…

HMG-CoA reductase inhibitors and COVID-19 mortality in Stockholm, Sweden: A registry-based cohort study

BACKGROUND: The relationship between statin treatment and Coronavirus Disease 2019 (COVID-19) mortality has been discussed due to the pleiotropic effects of statins on coagulation and immune mechanisms. However, available observational studies are hampered by study design flaws, resulting in substan...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergqvist, Rita, Ahlqvist, Viktor H., Lundberg, Michael, Hergens, Maria-Pia, Sundström, Johan, Bell, Max, Magnusson, Cecilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516243/
https://www.ncbi.nlm.nih.gov/pubmed/34648516
http://dx.doi.org/10.1371/journal.pmed.1003820
Descripción
Sumario:BACKGROUND: The relationship between statin treatment and Coronavirus Disease 2019 (COVID-19) mortality has been discussed due to the pleiotropic effects of statins on coagulation and immune mechanisms. However, available observational studies are hampered by study design flaws, resulting in substantial heterogeneity and ambiguities. Here, we aim to determine the relationship between statin treatment and COVID-19 mortality. METHODS AND FINDINGS: This cohort study included all Stockholm residents aged 45 or older (N = 963,876), followed up from 1 March 2020 until 11 November 2020. The exposure was statin treatment initiated before the COVID-19-pandemic, defined as recorded statin dispensation in the Swedish Prescribed Drug Register between 1 March 2019 and 29 February 2020. COVID-19-specific mortality was ascertained from the Swedish Cause of Death Registry. Hazard ratios (HRs) were calculated using multivariable Cox regression models. We further performed a target trial emulation restricted to initiators of statins. In the cohort (51.6% female), 169,642 individuals (17.6%) were statin users. Statin users were older (71.0 versus 58.0 years), more likely to be male (53.3% versus 46.7%), more often diagnosed with comorbidities (for example, ischemic heart disease 23.3% versus 1.6%), more frequently on anticoagulant and antihypertensive treatments, less likely to have a university-level education (34.5% versus 45.4%), and more likely to have a low disposable income (20.6% versus 25.2%), but less likely to reside in crowded housing (6.1% versus 10.3%). A total of 2,545 individuals died from COVID-19 during follow-up, including 765 (0.5%) of the statin users and 1,780 (0.2%) of the nonusers. Statin treatment was associated with a lowered COVID-19 mortality (adjusted HR, 0.88; 95% CI, 0.79 to 0.97, P = 0.01), and this association did not vary appreciably across age groups, sexes, or COVID-19 risk groups. The confounder adjusted HR for statin treatment initiators was 0.78 (95% CI, 0.59 to 1.05, P = 0.10) in the emulated target trial. Limitations of this study include the observational design, reliance on dispensation data, and the inability to study specific drug regimens. CONCLUSIONS: Statin treatment had a modest negative association with COVID-19 mortality. While this finding needs confirmation from randomized clinical trials, it supports the continued use of statin treatment for medical prevention according to current recommendations also during the COVID-19 pandemic.