Cargando…
Convolutional neural network for classification of eight types of arrhythmia using 2D time–frequency feature map from standard 12-lead electrocardiogram
Electrocardiograms (ECGs) are widely used for diagnosing cardiac arrhythmia based on the deformation of signal shapes due to changes in various heart diseases. However, these abnormal signs may not be observed in some 12 ECG channels, depending on the location, the heart shape, and the type of cardi...
Autores principales: | Jeong, Da Un, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516863/ https://www.ncbi.nlm.nih.gov/pubmed/34650175 http://dx.doi.org/10.1038/s41598-021-99975-6 |
Ejemplares similares
-
Automatic Classification Method of Arrhythmias Based on 12-Lead Electrocardiogram
por: Yang, Xiao, et al.
Publicado: (2023) -
Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network
por: Ji, Yinsheng, et al.
Publicado: (2019) -
Convolutional neural network optimized by differential evolution for electrocardiogram classification
por: Chen, Shan Wei, et al.
Publicado: (2023) -
Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification
por: Fki, Zeineb, et al.
Publicado: (2023)