Cargando…

Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions

In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Andersson, Alma, Larsson, Ludvig, Stenbeck, Linnea, Salmén, Fredrik, Ehinger, Anna, Wu, Sunny Z., Al-Eryani, Ghamdan, Roden, Daniel, Swarbrick, Alex, Borg, Åke, Frisén, Jonas, Engblom, Camilla, Lundeberg, Joakim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516894/
https://www.ncbi.nlm.nih.gov/pubmed/34650042
http://dx.doi.org/10.1038/s41467-021-26271-2
_version_ 1784583893413789696
author Andersson, Alma
Larsson, Ludvig
Stenbeck, Linnea
Salmén, Fredrik
Ehinger, Anna
Wu, Sunny Z.
Al-Eryani, Ghamdan
Roden, Daniel
Swarbrick, Alex
Borg, Åke
Frisén, Jonas
Engblom, Camilla
Lundeberg, Joakim
author_facet Andersson, Alma
Larsson, Ludvig
Stenbeck, Linnea
Salmén, Fredrik
Ehinger, Anna
Wu, Sunny Z.
Al-Eryani, Ghamdan
Roden, Daniel
Swarbrick, Alex
Borg, Åke
Frisén, Jonas
Engblom, Camilla
Lundeberg, Joakim
author_sort Andersson, Alma
collection PubMed
description In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases.
format Online
Article
Text
id pubmed-8516894
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85168942021-10-29 Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions Andersson, Alma Larsson, Ludvig Stenbeck, Linnea Salmén, Fredrik Ehinger, Anna Wu, Sunny Z. Al-Eryani, Ghamdan Roden, Daniel Swarbrick, Alex Borg, Åke Frisén, Jonas Engblom, Camilla Lundeberg, Joakim Nat Commun Article In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases. Nature Publishing Group UK 2021-10-14 /pmc/articles/PMC8516894/ /pubmed/34650042 http://dx.doi.org/10.1038/s41467-021-26271-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Andersson, Alma
Larsson, Ludvig
Stenbeck, Linnea
Salmén, Fredrik
Ehinger, Anna
Wu, Sunny Z.
Al-Eryani, Ghamdan
Roden, Daniel
Swarbrick, Alex
Borg, Åke
Frisén, Jonas
Engblom, Camilla
Lundeberg, Joakim
Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
title Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
title_full Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
title_fullStr Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
title_full_unstemmed Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
title_short Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
title_sort spatial deconvolution of her2-positive breast cancer delineates tumor-associated cell type interactions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516894/
https://www.ncbi.nlm.nih.gov/pubmed/34650042
http://dx.doi.org/10.1038/s41467-021-26271-2
work_keys_str_mv AT anderssonalma spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT larssonludvig spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT stenbecklinnea spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT salmenfredrik spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT ehingeranna spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT wusunnyz spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT aleryanighamdan spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT rodendaniel spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT swarbrickalex spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT borgake spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT frisenjonas spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT engblomcamilla spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions
AT lundebergjoakim spatialdeconvolutionofher2positivebreastcancerdelineatestumorassociatedcelltypeinteractions