Cargando…
Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network
This study aimed to evaluate a deep learning model for generating synthetic contrast-enhanced CT (sCECT) from non-contrast chest CT (NCCT). A deep learning model was applied to generate sCECT from NCCT. We collected three separate data sets, the development set (n = 25) for model training and tuning...
Autores principales: | Choi, Jae Won, Cho, Yeon Jin, Ha, Ji Young, Lee, Seul Bi, Lee, Seunghyun, Choi, Young Hun, Cheon, Jung-Eun, Kim, Woo Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516920/ https://www.ncbi.nlm.nih.gov/pubmed/34650076 http://dx.doi.org/10.1038/s41598-021-00058-3 |
Ejemplares similares
-
Incidence and Risk Factors of Nausea and Vomiting after Exposure to Low-Osmolality Iodinated Contrast Media in Children: A Focus on Preparative Fasting
por: Ha, Ji Young, et al.
Publicado: (2020) -
Monitoring Posterior Cerebral Perfusion Changes With Dynamic Susceptibility Contrast-Enhanced Perfusion MRI After Anterior Revascularization Surgery in Pediatric Moyamoya Disease
por: Seo, Yun Seok, et al.
Publicado: (2023) -
Contrast-enhanced ultrasound for the diagnosis of acute pyelonephritis in pediatric patients with urinary tract infection: A feasibility study
por: Lee, Han Byeol, et al.
Publicado: (2023) -
Image Turing test and its applications on synthetic chest radiographs by using the progressive growing generative adversarial network
por: Jang, Miso, et al.
Publicado: (2023) -
MR-contrast-aware image-to-image translations with generative adversarial networks
por: Denck, Jonas, et al.
Publicado: (2021)