Cargando…

Kondo effect and spin–orbit coupling in graphene quantum dots

The Kondo effect is a cornerstone in the study of strongly correlated fermions. The coherent exchange coupling of conduction electrons to local magnetic moments gives rise to a Kondo cloud that screens the impurity spin. Here we report on the interplay between spin–orbit interaction and the Kondo ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurzmann, Annika, Kleeorin, Yaakov, Tong, Chuyao, Garreis, Rebekka, Knothe, Angelika, Eich, Marius, Mittag, Christopher, Gold, Carolin, de Vries, Folkert Kornelis, Watanabe, Kenji, Taniguchi, Takashi, Fal’ko, Vladimir, Meir, Yigal, Ihn, Thomas, Ensslin, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516925/
https://www.ncbi.nlm.nih.gov/pubmed/34650056
http://dx.doi.org/10.1038/s41467-021-26149-3
_version_ 1784583900882796544
author Kurzmann, Annika
Kleeorin, Yaakov
Tong, Chuyao
Garreis, Rebekka
Knothe, Angelika
Eich, Marius
Mittag, Christopher
Gold, Carolin
de Vries, Folkert Kornelis
Watanabe, Kenji
Taniguchi, Takashi
Fal’ko, Vladimir
Meir, Yigal
Ihn, Thomas
Ensslin, Klaus
author_facet Kurzmann, Annika
Kleeorin, Yaakov
Tong, Chuyao
Garreis, Rebekka
Knothe, Angelika
Eich, Marius
Mittag, Christopher
Gold, Carolin
de Vries, Folkert Kornelis
Watanabe, Kenji
Taniguchi, Takashi
Fal’ko, Vladimir
Meir, Yigal
Ihn, Thomas
Ensslin, Klaus
author_sort Kurzmann, Annika
collection PubMed
description The Kondo effect is a cornerstone in the study of strongly correlated fermions. The coherent exchange coupling of conduction electrons to local magnetic moments gives rise to a Kondo cloud that screens the impurity spin. Here we report on the interplay between spin–orbit interaction and the Kondo effect, that can lead to a underscreened Kondo effects in quantum dots in bilayer graphene. More generally, we introduce a different experimental platform for studying Kondo physics. In contrast to carbon nanotubes, where nanotube chirality determines spin–orbit coupling breaking the SU(4) symmetry of the electronic states relevant for the Kondo effect, we study a planar carbon material where a small spin–orbit coupling of nominally flat graphene is enhanced by zero-point out-of-plane phonons. The resulting two-electron triplet ground state in bilayer graphene dots provides a route to exploring the Kondo effect with a small spin–orbit interaction.
format Online
Article
Text
id pubmed-8516925
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85169252021-10-29 Kondo effect and spin–orbit coupling in graphene quantum dots Kurzmann, Annika Kleeorin, Yaakov Tong, Chuyao Garreis, Rebekka Knothe, Angelika Eich, Marius Mittag, Christopher Gold, Carolin de Vries, Folkert Kornelis Watanabe, Kenji Taniguchi, Takashi Fal’ko, Vladimir Meir, Yigal Ihn, Thomas Ensslin, Klaus Nat Commun Article The Kondo effect is a cornerstone in the study of strongly correlated fermions. The coherent exchange coupling of conduction electrons to local magnetic moments gives rise to a Kondo cloud that screens the impurity spin. Here we report on the interplay between spin–orbit interaction and the Kondo effect, that can lead to a underscreened Kondo effects in quantum dots in bilayer graphene. More generally, we introduce a different experimental platform for studying Kondo physics. In contrast to carbon nanotubes, where nanotube chirality determines spin–orbit coupling breaking the SU(4) symmetry of the electronic states relevant for the Kondo effect, we study a planar carbon material where a small spin–orbit coupling of nominally flat graphene is enhanced by zero-point out-of-plane phonons. The resulting two-electron triplet ground state in bilayer graphene dots provides a route to exploring the Kondo effect with a small spin–orbit interaction. Nature Publishing Group UK 2021-10-14 /pmc/articles/PMC8516925/ /pubmed/34650056 http://dx.doi.org/10.1038/s41467-021-26149-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kurzmann, Annika
Kleeorin, Yaakov
Tong, Chuyao
Garreis, Rebekka
Knothe, Angelika
Eich, Marius
Mittag, Christopher
Gold, Carolin
de Vries, Folkert Kornelis
Watanabe, Kenji
Taniguchi, Takashi
Fal’ko, Vladimir
Meir, Yigal
Ihn, Thomas
Ensslin, Klaus
Kondo effect and spin–orbit coupling in graphene quantum dots
title Kondo effect and spin–orbit coupling in graphene quantum dots
title_full Kondo effect and spin–orbit coupling in graphene quantum dots
title_fullStr Kondo effect and spin–orbit coupling in graphene quantum dots
title_full_unstemmed Kondo effect and spin–orbit coupling in graphene quantum dots
title_short Kondo effect and spin–orbit coupling in graphene quantum dots
title_sort kondo effect and spin–orbit coupling in graphene quantum dots
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516925/
https://www.ncbi.nlm.nih.gov/pubmed/34650056
http://dx.doi.org/10.1038/s41467-021-26149-3
work_keys_str_mv AT kurzmannannika kondoeffectandspinorbitcouplingingraphenequantumdots
AT kleeorinyaakov kondoeffectandspinorbitcouplingingraphenequantumdots
AT tongchuyao kondoeffectandspinorbitcouplingingraphenequantumdots
AT garreisrebekka kondoeffectandspinorbitcouplingingraphenequantumdots
AT knotheangelika kondoeffectandspinorbitcouplingingraphenequantumdots
AT eichmarius kondoeffectandspinorbitcouplingingraphenequantumdots
AT mittagchristopher kondoeffectandspinorbitcouplingingraphenequantumdots
AT goldcarolin kondoeffectandspinorbitcouplingingraphenequantumdots
AT devriesfolkertkornelis kondoeffectandspinorbitcouplingingraphenequantumdots
AT watanabekenji kondoeffectandspinorbitcouplingingraphenequantumdots
AT taniguchitakashi kondoeffectandspinorbitcouplingingraphenequantumdots
AT falkovladimir kondoeffectandspinorbitcouplingingraphenequantumdots
AT meiryigal kondoeffectandspinorbitcouplingingraphenequantumdots
AT ihnthomas kondoeffectandspinorbitcouplingingraphenequantumdots
AT ensslinklaus kondoeffectandspinorbitcouplingingraphenequantumdots