Cargando…

Differential regulation of the water channel protein aquaporins in chondrocytes of human knee articular cartilage by aging

Knee cartilage is in an aqueous environment filled with synovial fluid consisting of water, various nutrients, and ions to maintain chondrocyte homeostasis. Aquaporins (AQPs) are water channel proteins that play an important role in water exchange in cells, and AQP1, -3, and -4 are known to be expre...

Descripción completa

Detalles Bibliográficos
Autores principales: Kyung, Bong Soo, Jung, Koo Whang, Yeo, Woo Jin, Seo, Hye Kyung, Lee, Yong-Soo, Suh, Dong Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516946/
https://www.ncbi.nlm.nih.gov/pubmed/34650163
http://dx.doi.org/10.1038/s41598-021-99885-7
Descripción
Sumario:Knee cartilage is in an aqueous environment filled with synovial fluid consisting of water, various nutrients, and ions to maintain chondrocyte homeostasis. Aquaporins (AQPs) are water channel proteins that play an important role in water exchange in cells, and AQP1, -3, and -4 are known to be expressed predominantly in cartilage. We evaluated the changes in AQP expression in chondrocytes from human knee articular cartilage in patients of different ages and identified the key factor(s) that mediate age-induced alteration in AQP expression. The mRNA and protein expression of AQP1, -3 and -4 were significantly decreased in fibrocartilage compared to hyaline cartilage and in articular cartilage from older osteoarthritis patients compared to that from young patients. Gene and protein expression of AQP1, -3 and -4 were altered during the chondrogenic differentiation of C3H10T1/2 cells. The causative factors for age-associated decrease in AQP included H(2)O(2), TNFα, and HMGB1 for AQP1, -3, and -4, respectively. In particular, the protective effect of AQP4 reduction following HMGB1 neutralization was noteworthy. The identification of other potent molecules that regulate AQP expression represents a promising therapeutic approach to suppress cartilage degeneration during aging.