Cargando…
High performance adaptive maximum power point tracking technique for off-grid photovoltaic systems
Solar photovoltaic (PV) energy has met great attention in the electrical power generation field for its many advantages in both on and off-grid applications. The requirement for higher proficiency from the PV system to reap the energy requires maximum power point tracking techniques (MPPT). This pap...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516987/ https://www.ncbi.nlm.nih.gov/pubmed/34650159 http://dx.doi.org/10.1038/s41598-021-99949-8 |
Sumario: | Solar photovoltaic (PV) energy has met great attention in the electrical power generation field for its many advantages in both on and off-grid applications. The requirement for higher proficiency from the PV system to reap the energy requires maximum power point tracking techniques (MPPT). This paper presents an adaptive MPPT of a stand-alone PV system using an updated PI controller optimized by harmony search (HS). A lookup table is formed for the temperature and irradiance with the corresponding voltage at MPP (V(MPP)). This voltage is considered as the updated reference voltage required for MPP at each temperature and irradiance. The difference between this updated reference voltage at MPP and the variable PV voltage due to changing the environmental conditions is used to stimulate PI controller optimized by HS to update the duty cycle (D) of the DC–DC converter. The temperature, irradiance, and corresponding duty cycle at MPP are utilized to convert this MPP technique into an adaptive one without the PI controllers' need. An experimental implementation of the proposed adaptive MPPT is introduced to test the simulation results' validity at different irradiance and temperature levels. |
---|