Cargando…
Diverse RNAs in adipose-derived extracellular vesicles and their therapeutic potential
Adipose tissue, which is considered an energy storage and active endocrine organ, produces and secretes a large amount of adipokines to regulate distant targets through blood circulation, especially extracellular vesicles (EVs). As cell-derived, membranous nanoparticles, EVs have recently garnered g...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516999/ https://www.ncbi.nlm.nih.gov/pubmed/34703651 http://dx.doi.org/10.1016/j.omtn.2021.08.028 |
Sumario: | Adipose tissue, which is considered an energy storage and active endocrine organ, produces and secretes a large amount of adipokines to regulate distant targets through blood circulation, especially extracellular vesicles (EVs). As cell-derived, membranous nanoparticles, EVs have recently garnered great attention as novel mediators in establishing intercellular communications as well as in accelerating interorgan crosstalk. Studies have revealed that the RNAs, including coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs) are key bioactive cargoes of EV functions in various pathophysiological processes, such as cell differentiation, metabolic homeostasis, immune signal transduction, and cancer. Moreover, certain EV-contained RNAs have gradually been recognized as novel biomarkers, prognostic indicators, or even therapeutic nanodrugs of diseases. Therefore, in this review, we comprehensively summarize different classes of RNAs presented in adipose-derived EVs and discuss their therapeutic potential according to the latest research progress to provide valuable knowledge in this area. |
---|