Cargando…
Deep representation features from DreamDIA(XMBD) improve the analysis of data-independent acquisition proteomics
We developed DreamDIA(XMBD) (denoted as DreamDIA), a software suite based on a deep representation model for data-independent acquisition (DIA) data analysis. DreamDIA adopts a data-driven strategy to capture comprehensive information from elution patterns of peptides in DIA data and achieves consid...
Autores principales: | Gao, Mingxuan, Yang, Wenxian, Li, Chenxin, Chang, Yuqing, Liu, Yachen, He, Qingzu, Zhong, Chuan-Qi, Shuai, Jianwei, Yu, Rongshan, Han, Jiahuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517002/ https://www.ncbi.nlm.nih.gov/pubmed/34650228 http://dx.doi.org/10.1038/s42003-021-02726-6 |
Ejemplares similares
-
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
por: He, Qingzu, et al.
Publicado: (2023) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
por: Lin, Yating, et al.
Publicado: (2022) -
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022) -
CITEMO(XMBD): A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells
por: Hu, Huan, et al.
Publicado: (2022)