Cargando…

Microdrilled tapers to enhance optical fiber lasers for sensing

In this work, an experimental analysis of the performance of different types of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror is presented. These artificially-controlled backscattering fiber reflectors are used in short linear cavity fiber lasers. In pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Perez-Herrera, R. A., Bravo, M., Roldan-Varona, P., Leandro, D., Rodriguez-Cobo, L., Lopez-Higuera, J. M., Lopez-Amo, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517004/
https://www.ncbi.nlm.nih.gov/pubmed/34650079
http://dx.doi.org/10.1038/s41598-021-00046-7
Descripción
Sumario:In this work, an experimental analysis of the performance of different types of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror is presented. These artificially-controlled backscattering fiber reflectors are used in short linear cavity fiber lasers. In particular, laser emission and sensor application features are analyzed when employing optical tapered fibers, micro-drilled optical fibers and 50 μm-waist or 100 μm-waist micro-drilled tapered fibers (MDTF). Single-wavelength laser with an output power level of about 8.2 dBm and an optical signal-to-noise ratio of 45 dB were measured when employing a 50 μm-waist micro-drilled tapered optical fiber. The achieved temperature sensitivities were similar to those of FBGs; however, the strain sensitivity improved more than one order of magnitude in comparison with FBG sensors, attaining slope sensitivities as good as 18.1 pm/με when using a 50 μm-waist MDTF as distributed reflector.